nitrogen bonds in the above five molecules. The C=S bond in the present study is 1.65 Å as compared with 1.63-1.66 Å for molecules I and III, 1.70 Å for molecule II, 1.70 and 1.75 Å for molecule IV, and 1.71-1.72 Å for various thiourea derivatives (Truter, 1960; Dias & Truter, 1964; Wheatley, 1953).

The C-S-S-C group has the peroxide configuration with a dihedral angle of  $99.6^{\circ}$  as compared with  $96.4^{\circ}$  for I,  $93^{\circ}$  for 2-aminoethyl 2-aminoethanethiolsulfonate (Ristey, 1965) and  $101^{\circ}$  for N,N-diglycyl-L-cystine dihydrate (Yakel & Hughes, 1954).

The author wishes to thank Dr Isabella Karle for both her interest and constructive comments throughout the course of this work. He is also indebted to Mr Stephen Brenner who prepared many of the programs used.

## References

BONAMICO, M., DESSY, G., MARIANI, G., VACIAGO, A. & ZAMBONELLI, L. (1965). Acta Cryst. 19, 619. BUCKMAN, J. D. (1965). Thesis, Vanderbilt University.

- BUSING, W. R., MARTIN, L. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- DIAS, H. W. & TRUTER, M. R. (1964). Acta Cryst. 17, 937.
- GOODHUE, L. D. (1960). J. Econ. Entomol. 53, 805.
- GOODHUE, L. D. & FLORENCE, W. W. (1952). U.S. Pat. 2,598,989.
- GOODHUE, L. D. & TISSOL, C. E. (1952). U.S. Pat. 2,621,143.
- JOHNSON, C. K. (1965). ORTEP. ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969.
- KARLE, I. L. & KARLE, J. (1964). Acta Cryst. 19, 92.
- KARLE, I. L., ESTLIN, J. A. & BRITTS, K. (1967). Acta Cryst. 22, 273.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849.
- KLUG, H. P. (1966). Acta Cryst. 21, 536.
- RISTEY, W. J. (1965). Thesis, Vanderbilt University.
- SVETLICH, J. F. (1958). U.S. Pat. 2,826,563.
- SCHULYE, W. A., SHORT, G. H. & CROUCH, W. W. (1950). Ind. Eng. Chem. 42, 916.
- TRUTER, M. R. (1960). J. Chem. Soc. p. 997.
- WHEATLEY, P. J. (1953). Acta Cryst. 6, 369.
- YAKEL, H. L. & HUGHES, E. W. (1954). Acta Cryst. 7, 291.

## Acta Cryst. (1969). B25, 1001

# Crystal data of two high pressure phases of SrB<sub>2</sub>O<sub>4</sub>. By P. D. DERNIER, Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, U.S.A.

## (Received 8 October 1968)

SrB<sub>2</sub>O<sub>4</sub>(III) and SrB<sub>2</sub>O<sub>4</sub>(IV) are two high pressure phases of strontium metaborate. Polycrystalline SrB<sub>2</sub>O<sub>4</sub>(III) was prepared at 15 kbar and 600 °C. It is orthorhombic, with  $a = 12 \cdot 426 \pm 0 \cdot 002$ ,  $b = 6 \cdot 418 \pm 0 \cdot 001$  and  $c = 11 \cdot 412 \pm 0 \cdot 002$  Å, Z = 12,  $d_c = 3 \cdot 77$  g.cm<sup>-3</sup>, symmetry *Pna2*<sub>1</sub>, and is isostructural with CaB<sub>2</sub>O<sub>4</sub>(III). SrB<sub>2</sub>O<sub>4</sub>(IV), formed at 20 kbar and 600 °C, is cubic, with  $a = 9 \cdot 222 \pm 0 \cdot 001$  Å, Z = 12,  $d_c = 4 \cdot 38$  g.cm<sup>-3</sup>, space group symmetry *Pa3*, and is isostructural with CaB<sub>2</sub>O<sub>4</sub>(IV). In general the behavior of SrB<sub>2</sub>O<sub>4</sub> under pressure is very similar to that of CaB<sub>2</sub>O<sub>4</sub>.

#### Introduction

This paper reports the synthesis and crystal data of two new high pressure phases of strontium metaborate. At atmospheric pressure  $SrB_2O_4$  is isostructural with  $CaB_2O_4(I)$ (Block, Perloff & Weir, 1964). The latter compound is orthorhombic with all boron atoms triangularly coordinated and the calcium atoms surrounded by eight-oxygen polyhedra. Since the polymorphism of  $SrB_2O_4$  is similar to that of  $CaB_2O_4$ , all modifications of  $SrB_2O_4$  will be designated in the same fashion as their isostructural  $CaB_2O_4$ counterparts. (Marezio, Remeika, & Dernier, 1969a).

#### Synthesis

The high pressure apparatus and experimental procedures were the same as has been previously described in the synthesis of the high pressure modifications of CaB<sub>2</sub>O<sub>4</sub> (Marezio *et al.* 1969 *a, b*). However, the pressure and temperature conditions were significantly lower for each of the respective high pressure phases of SrB<sub>2</sub>O<sub>4</sub>. SrB<sub>2</sub>O<sub>4</sub>(II) was retained metastably after pressurizing SrB<sub>2</sub>O<sub>4</sub>(I) to 15 kbar and raising the temperature to 600°C for a one hour period. The synthesis of SrB<sub>2</sub>O<sub>4</sub>(IV) required a pressure of 20 kbar and a temperature of 600°C. Further increases of pressure above 40 kbar resulted in the decomposition of SrB<sub>2</sub>O<sub>4</sub>. One product of decomposition was found to be  $SrB_4O_7$  (Krogh-Moe, 1964), as identified by X-ray powder photographs and precession films.

Both  $SrB_2O_4(III)$  and  $SrB_2O_4(IV)$  could be reconverted to the low pressure starting material,  $SrB_2O_4(I)$ , by annealing overnight at 750°C in air. X-ray powder films of the annealed  $SrB_2O_4$  and unpressurized  $SrB_2O_4$  were identical. In addition, single crystals of both high pressure modifications were grown at a pressure of 15 kbar and a temperature of 600°C with water as a solvent. The crystals were easily identified and separated under a crossed polarized field of light, since the crystals of  $SrB_2O_4(III)$  were birefringent whereas those of  $SrB_2O_4(IV)$  were isotropic. It should be noted that the presence of water apparently lowered the pressure range of stability of  $SrB_2O_4(IV)$ . This phenomenon has been observed previously for several other systems but no *a priori* justification can be proposed at this time.

## Crystal data

From precession photographs taken with Mo  $K\alpha$  radiation SrB<sub>2</sub>O<sub>4</sub>(III) was found to be orthorhombic with systematic absences for 0kl, k+l=2n+1, and for h0l, h=2n+1. These are identical with the conditions found for CaB<sub>2</sub>O<sub>4</sub>(III) (Marezio, Remeika & Dernier, 1969*a*). The correct space group for CaB<sub>2</sub>O<sub>4</sub>(III) was found to be *Pna*2<sub>1</sub> and it is highly probable that it is the same for SrB<sub>2</sub>O<sub>4</sub>(III). The lattice parameters for SrB<sub>2</sub>O<sub>4</sub>(III) were

determined from a powder film taken at room temperature and atmospheric pressure with a Norelco Camera of 114.6 cm diameter and Cr Ka (2.2909 Å) radiation. The parameters were refined by the least-squares program of Mueller, Heaton & Miller (1960). The final refined parameters are  $a = 12.426 \pm 0.002$ ,  $b = 6.418 \pm 0.001$  and c = $11.412 \pm 0.002$  Å. The calculated density based on 12 molecules per unit cell is 3.77 g.cm<sup>-3</sup>. A comparison of observed and calculated interplanar spacings is given in Table 1.

Table 1. Powder pattern of SrB<sub>2</sub>O<sub>4</sub>(III)

| hkl        | $d_{obs}$     | $d_{calc}$     | Ι          |
|------------|---------------|----------------|------------|
| 202        | 4.177         | <b>∫</b> 4·202 | m          |
| 211        | 4.1//         | <b>4</b> ·157  |            |
| 212        | 3.509         | 3.516          | m          |
| 311        | 3.325         | 3.329          | m          |
| 113        | 3.163         | 3.164          | m          |
| 120        |               | ∫ 3·107        | m          |
| 400        | 3.092         | 1 3.107        |            |
| 121        | • • • •       | 2.998          | S          |
| 401        | 2.997         | 1 2.997        |            |
| 004        | 2.849         | 2.853          | ms         |
| 204        | 2.587         | 2.593          | m          |
| 114        | 2.548         | 2.551          | m          |
| 412        | 2.509         | 2.511          | m          |
| 214        | 2.401         | 2.404          | w          |
| 322        | 2 101         | (2.318)        | w          |
| 510        | 2.323         | 1 2.318        |            |
| 205        | 2.140         | 2.142          | m          |
| 115        | 2.116         | 2.119          | w          |
| 404        | 2110          | (2.101)        | w          |
| 124        | 2.089         | 1 2.101        |            |
| 131        |               | 2.073          | w          |
| 600        | <b>2·</b> 064 | 2.071          |            |
| 224        | 2.005         | 2:017          | m          |
| 224        | 2 005         | ( 1.992        | <br>m      |
| <u>414</u> | 1.992         | 1.997          |            |
| 513        | 1.075         | 1.979          | т          |
| 610        | 1.067         | 1.071          |            |
| 611        | 1.029         | 1.0/2          | //L<br>1/1 |
| 006        | 1.808         | 1.902          | me         |
| 221        | 1.976         | 1.875          | 1115       |
| 122        | 1.8/3         | 1.844          | m          |
| 206        | 1.816         | 1.810          | 111<br>147 |
| 514        | 1.706         | 1.700          | 117<br>147 |
| 612        | 1.190         | ( 1.750        | 147<br>147 |
| 216        | 1.749         | 1.750          | n          |
| 710        | 1.708         | 1.711          | м,         |
| 026        | 1.636         | 1.636          | 147<br>147 |
| 226        | 1.521         | 1.522          | <i>n</i> / |
| 910        | 1.508         | 1.500          | <i>n</i> / |
| 610        | 1.400         | 1.400          | ww         |
| 517        | 1.333         | 1.333          | wm         |
| 202        | 1.384         | 1.784          | w//l       |
| 000        | 1-204         | 1.204          | ///<br>m   |
| 120        | 1.107         | 1.102          | <i>m</i>   |
| 040        | 1.176         | 1.176          | m          |
| 546        | 1.1/0         | 1.1/0          | m          |

A powder film of  $SrB_2O_4(IV)$  taken with Cu  $K\alpha$  (1.5418Å) radiation at room temperature and atmospheric pressure, was indexed on a cubic cell with a lattice parameter of approximately 9.2 Å. From a comparison with a powder film of the cubic phase CaB<sub>2</sub>O<sub>4</sub>(IV) (Marezio, Remeika & Dernier 1969b) it appears that  $SrB_2O_4(IV)$  is isostructural with  $CaB_2O_4(IV)$ . The powder data of the former compound are given in Table 2. The final refined lattice parameter for  $SrB_2O_4(IV)$  was  $a=9.222\pm0.001$  Å, as obtained by the previously mentioned least-squares program. The calculated density based on 12 molecules per unit cell is 4.38 g.cm<sup>-3</sup>.

# Table 2. Powder pattern of SrB<sub>2</sub>O<sub>4</sub>(IV)

| $h^2 + k^2 + l^2$ | $d_{obs}$ | $d_{calc}$ | Ι          |
|-------------------|-----------|------------|------------|
| 5                 | 4.118     | 4.124      | m          |
| 6                 | 3.747     | 3.765      | wm         |
| 8                 | 3.249     | 3.261      | w          |
| 9                 | 3.074     | 3.074      | w          |
| 11                | 2.774     | 2.781      | s          |
| 12                | 2.658     | 2.662      | 17147      |
| 13                | 2.552     | 2.558      |            |
| 14                | 2.352     | 2.350      |            |
| 14                | 2.706     | 2.405      |            |
| 10                | 2.230     | 2.300      | w<br>      |
| 17                | 2-220     | 2.230      | w          |
| 10                |           |            |            |
| 19                | 2 050     | 2 0 ( 2    |            |
| 20                | 2.030     | 2.062      | m          |
| 21                | 2.009     | 2.012      | ms         |
| 22                | 1.959     | 1.966      | m          |
| 24                | 1.8//     | 1.882      | w          |
| 27                | 1.7/1     | 1.775      | m          |
| 29                | 1.709     | 1.713      | wm         |
| 30                | 1.680     | 1.684      | m          |
| 32                | 1.628     | 1.630      | m          |
| 33                |           |            |            |
| 34                | 1.579     | 1.281      | W          |
| 35                |           |            |            |
| 36                | 1.535     | 1.537      | wm         |
| 38                | 1.494     | 1.496      | m          |
| 40                | 1.456     | 1.458      | vw         |
| 43                | 1.404     | 1.406      | m          |
| 44                | 1.389     | 1.390      | UW         |
| 45                | 1.373     | 1.375      | m          |
| 46                | 1.359     | 1.360      | m          |
| 48                |           |            |            |
| 53                | 1.266     | 1.267      | m          |
| 54                | 1.253     | 1.255      | m          |
| 56                | 1.230     | 1.232      | m          |
| 57                |           | 1 202      |            |
| 59                | 1.199     | 1.201      | ms         |
| 61                | 1.179     | 1.181      | wm         |
| 62                | 1.170     | 1.171      | wm         |
| 64                | 1.152     | 1.153      | w          |
| 69                | 1.108     | 1.110      | 147        |
| 70                | 1.101     | 1.102      | w          |
| 75                | 1.064     | 1.065      | m          |
| 75                | 1.050     | 1.051      | 141        |
| 78                | 1.043     | 1.044      | <i>w</i>   |
| 84                | 1.006     | 1.006      | <i>n</i> / |
| 04<br>95          | 1.000     | 1.000      | <i>w</i>   |
| 86                | 0.0033    | 0.0044     | <i>w</i>   |
| 01                | 0.9555    | 0.0667     | wm         |
| 91                | 0.0502    | 0.0512     | <i>w</i>   |
| 94                | 0.9302    | 0.9312     | w<br>100   |
| 90                | 0.0167    | 0.9412     | <i>m</i>   |
| 101               | 0.0026    | 0.91/0     | m          |
| 104               | 0.9030    | 0.9045     | W          |
| 107               | 0.8911    | 0.8915     | m          |
| 109               | 0.8827    | 0.8833     | w          |
| 110               | 0.8/86    | 0.8793     | m          |
| 116               | 0.8556    | 0.8562     | w          |
| 117               | 0.8519    | 0.8526     | w          |
| 118               | 0.8484    | 0.8490     | w          |
| 123               | 0.8312    | 0.8315     | m          |
| 125               | 0.8245    | 0.8249     | т          |
| 126               | 0.8212    | 0.8216     | m          |
| 128               | 0.8148    | 0.8151     | w          |
| 133               | 0.7995    | 0.7997     | w          |
| 134               | 0.7964    | 0.7967     | m          |
| 136               | 0.7906    | 0.7908     | vw         |
| 139               | 0.7821    | 0.7822     | m          |
| 141               | 0.7766    | 0.7766     | m          |

1

CA CA CA

|       | Approximate range of stability* |            | Density (g.cm <sup>-3</sup> ) |                                 |              | Lattice parameters (Å)                |                                       |
|-------|---------------------------------|------------|-------------------------------|---------------------------------|--------------|---------------------------------------|---------------------------------------|
| Fhase | $SrB_2O_4$                      | $CaB_2O_4$ | $SrB_2O_4$                    | CaB <sub>2</sub> O <sub>4</sub> | Symmetry     | SrB <sub>2</sub> O <sub>4</sub>       | CaB <sub>2</sub> O <sub>4</sub>       |
| I     | 0-8 kbar                        | 0-12 kbar  | 3.33                          | 2.70                            | Orthorhombic | a = 6.589<br>b = 12.018<br>c = 4.337  | a = 6.214 $b = 11.604$ $c = 4.285$    |
| II    | -                               | 12–15 kbar | _                             | 2.89                            | Orthorhombic |                                       | a = 8.369<br>b = 13.816<br>c = 5.007  |
| III   | 8–15 kbar                       | 15–25 kbar | 3.77                          | 3.05                            | Orthorhombic | a = 12.426<br>b = 6.418<br>c = 11.412 | a = 11.380<br>b = 6.382<br>c = 11.304 |
| IV    | 15–40 kbar                      | 25-40 kbar | 4-38                          | 3.43                            | Cubic        | a = 9.222                             | <i>a</i> = 9.008                      |

Table 3. Polymorphism of SrB<sub>2</sub>O<sub>4</sub> and CaB<sub>2</sub>O<sub>4</sub>

\* Temperature =  $600^{\circ}$ C for SrB<sub>2</sub>O<sub>4</sub> and  $900^{\circ}$ C for CaB<sub>2</sub>O<sub>4</sub>.

### Discussion

For ease of comparison between the SrB<sub>2</sub>O<sub>4</sub> and CaB<sub>2</sub>O<sub>4</sub> polymorphic series, crystal data and pressure ranges of stability are given in Table 3, and a plot of densities versus fraction of tetrahedral boron can be found in Fig.1. It can be seen from Table 3 as well as from Fig.1 that the behavior of SrB<sub>2</sub>O<sub>4</sub> under pressure is very similar to that of  $CaB_2O_4$ .

One notable difference in the two polymorphic series is that an expected phase of SrB<sub>2</sub>O<sub>4</sub> is missing, namely,  $SrB_2O_4(II)$ . It could be predicted from the data in Table 3 that this phase should exist at 6-8 kbar and 600°C. By further extrapolation of densities (see Fig.1) and analogy to  $CaB_2O_4(II)$  (Zachariasen, 1967) one would expect this modification to be orthorhombic with a density of 3.6 g.cm<sup>-3</sup>, a unit-cell volume of 650 Å<sup>3</sup>, and very roughly, lattice parameters a = 8.9, b = 14.3, and c = 5.1 Å. However, after considerable experimentation not a trace of SrB<sub>2</sub>O<sub>4</sub>(II) could be detected in any of the X-ray powder films of the high pressure samples. It should be noted that  $CaB_2O_4(II)$ was never obtained in the pure state from high pressure experiments at these laboratories. Instead, CaB<sub>2</sub>O<sub>4</sub>(II) was always found as a mixture with CaB<sub>2</sub>O<sub>4</sub>(I) or CaB<sub>2</sub>O<sub>4</sub>(III). It seems reasonable to expect the pressure range of stability for SrB<sub>2</sub>O<sub>4</sub>(II) to be narrower than CaB<sub>2</sub>O<sub>4</sub>(II). From Table





3 and from the known coordination changes for CaB<sub>2</sub>O<sub>4</sub> the implication is that the energy associated with the transition  $I \rightarrow II$  should be about the same for both compounds since only the boron coordination is changing. However, for the transition II  $\rightarrow$  III both cation coordinations are increasing and the energy required for this transition should be less for  $SrB_2O_4$  than for  $CaB_2O_4$ .

In general it can be seen from Table 3 that considerably less energy is required, for each of the respective transitions, for SrB<sub>2</sub>O<sub>4</sub> than for CaB<sub>2</sub>O<sub>4</sub>. Less energy is necessary to increase the strontium coordination than the calcium coordination since Sr is larger than Ca in ionic radius and is more easily accomodated in a larger lattice site. One would expect even lower energies for similar transitions for BaB<sub>2</sub>O<sub>4</sub>. However, preliminary experiments with BaB<sub>2</sub>O<sub>4</sub> show that high pressure phases of this compound are not isostructural with any of the SrB<sub>2</sub>O<sub>4</sub> phases.

Finally, a comparison of lattice parameters between isostructural compounds in Table 3 shows that for phase III a unique distortion of the unit cell occurs when strontium is substituted for calcium. Whereas the lattice parameters  $a_0$  for SrB<sub>2</sub>O<sub>4</sub>(III) is 9.2% larger than the corresponding parameter of  $CaB_2O_4(III)$ , the lattice parameters  $b_0$  and  $c_0$  are only 0.6% and 1.0% larger respectively. It is difficult to explain this unidirectional expansion without a knowledge of the structural details of SrB<sub>2</sub>O<sub>4</sub>(III). Nevertheless, it can be speculated that second-nearest neighbor interactions in CaB<sub>2</sub>O<sub>4</sub>(III) could become first-nearest neighbor interactions in SrB<sub>2</sub>O<sub>4</sub>(III).

The author would especially like to thank M. Marezio and J.P. Remeika for valuable suggestions and discussions concerning this project.

## References

- BLOCK, S., PERLOFF, A. & WEIR, C. E. (1964). Acta Cryst. 17, 314.
- KROGH-MOE, J. (1964). Acta Chem. Scand. 18, 2055.
- MAREZIO, M., REMEIKA, J. P. & DERNIER, P. D. (1969a). Acta Crvst. B25, 955.
- MAREZIO, M., REMEIKA, J. P. & DERNIER, P. D. (1969b). Acta Cryst. B25, 965.
- MUELLER, M. H., HEATON, L. & MILLER, R. T. (1960). Acta Cryst. 13, 828.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 44.